Problem with a solution proposed by Arkady Alt, San Jose, California, USA
Determine maximum value of

$$
F(x, y, z)=\min \left\{\frac{|y-z|}{|x|}, \frac{|z-x|}{|y|}, \frac{|x-y|}{|z|}\right\},
$$

where x, y, z be arbitrary nonzero real numbers.

Solution1.(Logical)

First note that maximum value of $F(x, y, z)$ can be characterized as maximum value of parameter $t>0$ for which inequality $t \leq F(x, y, z)$ has solution in real nonzero x, y, z. Thus we should find greatest value of parameter t for which inequality

$$
t \leq \min \left\{\frac{|y-z|}{|x|}, \frac{|z-x|}{|y|}, \frac{|x-y|}{|z|}\right\} \Leftrightarrow\left\{\left.\begin{array}{l}
|x| t \leq|y-z| \tag{1}\\
|y| t \leq|z-x| \\
|z| t \leq|x-y|
\end{array} \right\rvert\,\right.
$$

has nonzero solution.
Since $F(x, y, z)=F(-x,-y,-z)$ Due full symmetry and Since $F(x, y, z)=F(-x,-y,-z)$ we can suppose that $x<y<z$ where $y, z>0$. We will consider two cases:

1. In the case when $x<0$ inequality (1) equivalent to the system of inequalities

$$
\left\{\left.\begin{array}{c}
-x t \leq z-y \tag{2}\\
y t \leq z-x \\
z t \leq y-x
\end{array} \right\rvert\,\right.
$$

Adding the first and the third inequalities of (2) we obtain

$$
t(z-x) \leq z-x \Leftrightarrow t \leq 1, \text { since } z-x>0 .
$$

2. In the case $x>0$ from inequality $|z| t \leq|x-y| \Leftrightarrow z t \leq y-x \Leftrightarrow z \leq \frac{y-x}{t}$
and inequality $y<z$ follows $x<y(1-t) \Rightarrow t<1$.
So, $t \leq 1$ is the necessity condition for solvability of (1).
From the other hand, if we set $t=1$ in the system (2) then for any positive p, q and $x=:-p, y:=q$ we obtain for z inequalities $p \leq z-q, q \leq z+p, z \leq q+p$ and $q<z$. But $p \leq z-q \Leftrightarrow p+q \leq z \Rightarrow q<z$ and $q \leq z+p$. Thus for z remains only $p+q \leq z \leq q+p$, i.e. $z=p+q$.
So, greatest value of parameter t which provide solvability of inequality (1) is 1 .
Moreover if $t=1$ then inequality (1) has infinitely many solutions $(-p, q, p+q)$ for arbitrary $p, q>0$.
Thus we finally get $\max _{x, y, z \neq 0}\left(\min \left\{\frac{|y-z|}{|x|}, \frac{|z-x|}{|y|}, \frac{|x-y|}{|z|}\right\}\right)=1$.

Solution 2.(Phenomenological).

First we will prove that $F(x, y, z) \leq 1$.
Really, if we suppose opposite, i.e. that there is $x, y, z \neq 0$, such
$\min \left\{\frac{|y-z|}{|x|}, \frac{|z-x|}{|y|}, \frac{|x-y|}{|z|}\right\}>1 \Leftrightarrow\left\{\begin{array}{l}|y-z|>|x| \\ |z-x|>|y| \\ |x-y|>|z|\end{array} \left\lvert\, \Leftrightarrow\left\{\left.\begin{array}{l}(y-z)^{2}-x^{2}>0 \\ (z-x)^{2}-y^{2}>0 \\ (x-y)^{2}-z^{2}>0\end{array} \right\rvert\,\right.\right.\right.$.
Multiplying all inequalities in the latter system we immediately obtain
contradiction because $0<\left((y-z)^{2}-x^{2}\right)\left((z-x)^{2}-y^{2}\right)\left((x-y)^{2}-z^{2}\right)=$ $(y-z-x)(y-z+x)(z-x-y)(z-x+y)(x-y-z)(x-y+z)=$ $-(x+y-z)^{2}(y+z-x)^{2}(z+x-y)^{2}<0$.
Since $F(-1,2,3)=1$ then upper bound 1 for $F(x, y, z)$ is its maximum.

